CSME Conference Proceedings (May 27-30, 2018)
Permanent URI for this collection
Browse
Browsing CSME Conference Proceedings (May 27-30, 2018) by Author "10eaf08c6242938700080de7af8b4d9c"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Development And Validation Of A Numerical Model For Vibration Of Power Lines(CSME-SCGM, May-18) Jalali, Mohammad Hadi; Rideout, GeoffModal testing is being investigated as a means of non-destructive evaluation of wooden utility pole strength. In order to understand the effects of conductors on the dynamics of the poles, a numerically efficient model based on lumped segments for the conductor has been developed and experimentally validated. The cable is modeled as number of lumped segments jointed with axial and torsional springs and dampers representing the cable’s compliance and damping. In order to validate the models, an experimental set up for vibration testing of the cable has been built. Time response measurement and modal testing are performed and the comparison of the experimental results with the numerical results show that the lumped segment model has the fidelity to capture the dynamics of the cables efficiently and accurately.Item Open Access On The Finite Element Modeling Of Turbo Machinery Rotors In Rotor Dynamic Analysis(CSME-SCGM, May-18) Jalali, Mohammad Hadi; Nouri, Nima; Ziaei-Rad, SaeedIn this study, a program based on finite element method is developed for rotor dynamic analysis of gas turbine rotors. In the FE model of the rotors, various minor and major parts of the rotor are modeled using the cylindrical and tapered Timoshenko beam elements and the lateral vibration behavior of the rotor is evaluated. In the paper, the lateral vibration behavior of a certain gas turbine rotor is analyzed using the developed finite element program and coupled lateral-torsional vibration behavior of the rotor is analyzed using 3D finite element model. A good agreement exists between the results obtained from two FE models. Two design models are used for the rotor one of which has 2 bearings and the other one has 4 bearings with specific locations. The effects of the number of the bearings on the critical speeds, operational deflection shapes and unbalance response of the rotor is investigated. It is found that the number of the bearings has significant effect on the first critical speed but slight effect on the second and third critical speeds. It is demonstrated that the number of the bearings can be used as one of the system design parameters.