Generative Adversarial Network (GAN) for Medical Image Synthesis and Augmentation

Date

2023-03-28

Authors

Liang, Zhaohui

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Medical image processing aided by artificial intelligence (AI) and machine learning (ML) significantly improves medical diagnosis and decision making. However, the difficulty to access well-annotated medical images becomes one of the main constraints on further improving this technology. Generative adversarial network (GAN) is a DNN framework for data synthetization, which provides a practical solution for medical image augmentation and translation. In this study, we first perform a quantitative survey on the published studies on GAN for medical image processing since 2017. Then a novel adaptive cycle-consistent adversarial network (Ad CycleGAN) is proposed. We respectively use a malaria blood cell dataset (19,578 images) and a COVID-19 chest X-ray dataset (2,347 images) to test the new Ad CycleGAN. The quantitative metrics include mean squared error (MSE), root mean squared error (RMSE), peak signal-to-noise ratio (PSNR), universal image quality index (UIQI), spatial correlation coefficient (SCC), spectral angle mapper (SAM), visual information fidelity (VIF), Frechet inception distance (FID), and the classification accuracy of the synthetic images. The CycleGAN and variant autoencoder (VAE) are also implemented and evaluated as comparison. The experiment results on malaria blood cell images indicate that the Ad CycleGAN generates more valid images compared to CycleGAN or VAE. The synthetic images by Ad CycleGAN or CycleGAN have better quality than those by VAE. The synthetic images by Ad CycleGAN have the highest accuracy of 99.61%. In the experiment on COVID-19 chest X-ray, the synthetic images by Ad CycleGAN or CycleGAN have higher quality than those generated by variant autoencoder (VAE). However, the synthetic images generated through the homogenous image augmentation process have better quality than those synthesized through the image translation process. The synthetic images by Ad CycleGAN have higher accuracy of 95.31% compared to the accuracy of the images by CycleGAN of 93.75%. In conclusion, the proposed Ad CycleGAN provides a new path to synthesize medical images with desired diagnostic or pathological patterns. It is considered a new approach of conditional GAN with effective control power upon the synthetic image domain. The findings offer a new path to improve the deep neural network performance in medical image processing.

Description

Keywords

Computer science, Artificial intelligence, Information science

Citation

Collections