A Novel Distributed and Stealthy Attack on Active Distribution Networks and a Mitigation Strategy
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Rapid advances in smart devices tremendously facilitate our day-to-day lives. However, these can be exploited remotely via existing cyber vulnerabilities to cause disruption at the physical infrastructure level. In this paper, we discover a novel distributed and stealthy attack that uses malicious actuation of a large number of small-scale loads residing within a distribution network (DN). This attack is capable of cumulatively violating the underlying operational system limits, leading to widespread and prolonged disruptions. A key element of this attack is the efficient use of attack resources, planned via Stackelberg games. To mitigate this type of an attack, we propose a countermeasure strategy which adaptively suppresses adverse effects of the attack when detected in a timely manner. The effectiveness of the proposed mitigation strategy is demonstrated via theoretical convergence studies, practical evaluations, and comparisons with the state-of-the-art strategies using realistic load flow and DN infrastructure models.