Captodative substitution: a strategy for enhancing the conductivity of molecular electronic devices
dc.contributor.author | Zeng, Tao | |
dc.contributor.author | Stuyver, Thijs | |
dc.contributor.author | Yuta, Tsuji | |
dc.contributor.author | Fias, Stijn | |
dc.contributor.author | Geerlings, Paul | |
dc.contributor.author | De Proft, Frank | |
dc.date.accessioned | 2020-04-03T16:09:52Z | |
dc.date.available | 2020-04-03T16:09:52Z | |
dc.date.issued | 2018 | |
dc.description.abstract | We explore a new strategy to tune the conductivity of molecular electronic devices: captodative substitution. We demonstrate that a careful design of such substitution schemes on a benzene parental structure can enhance the conductivity by almost an order of magnitude under small bias. Once this new strategy has been established, we apply it to molecular wires and demonstrate that it enables the unprecedented anti-Ohmic design of wires whose conductivity increases with the length. Overall, the captodative substitution approach provides a very promising pathway toward full chemical control of the conductivity of molecules which opens up the possibility to design molecular switches with an improved on/off ratio among others. | en_US |
dc.identifier.citation | T. Stuyver, T. Zeng, Y. Tsuji, S. Fias, P. Geerlings, F. De Proft. “Captodative substitution: a strategy for enhancing the conductivity of molecular electronic devices.” Journal of Physical Chemistry C 2018, 133, 3194-3200. | en_US |
dc.identifier.uri | https://doi.org/10.1021/acs.jpcc.7b10877 | en_US |
dc.identifier.uri | https://hdl.handle.net/10315/37165 | |
dc.language.iso | en | en_US |
dc.publisher | American Chemical Society | en_US |
dc.rights.article | https://pubs.acs.org/doi/10.1021/acs.jpcc.7b10877 | en_US |
dc.title | Captodative substitution: a strategy for enhancing the conductivity of molecular electronic devices | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- captodative strategy_revised_markedup_JPCC.pdf
- Size:
- 505.85 KB
- Format:
- Adobe Portable Document Format
- Description:
- Main text
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.83 KB
- Format:
- Item-specific license agreed upon to submission
- Description: