A Swept Path Analysis of Intersection Designs for Long Combination Vehicles
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The efficiency of a supply chain depends heavily on a region's ability to accommodate trucks of varying sizes. Intersections are potential bottleneck locations for first- and last-mile logistics, where complexities arise due to inadequate geometric properties. The superior productivity of Long Combination Vehicles (LCVs) has led to increasing adoption by large establishments. However, LCVs face significant impediments due to their extra lengths and subsequent impacts on turning envelopes. This thesis focuses on the range and combination of geometric factors leading to successful LCV right-turn movements, such as curb radii and lane widths. Swept-path simulations are conducted for seven intersections in the Region of Peel using AutoTURN software to classify scenarios as pass or fail. Binomial logit models are estimated from these results. The correct prediction rates of the models range from 74% to 97%. A quick-response toolkit is developed to assist roadway authorities in the LCV route acceptance process.