Asymptotic Properties of Weighted Likelihood Estimators
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The relevance weighted likelihood method was introduced by Hu and Zidek (Technical Report No. 161, Department of Statistics, The University of British Columbia, Vancouver, BC, Canada, 1995) to formally embrace a variety of statistical procedures for trading bias for precision. Their approach combines all relevant information through a weighted version of the likelihood function. The present paper is concerned with the asymptotic properties of a class of maximum weighted likelihood estimators that contains those considered by Hu and Zidek (Technical Report No. 161, Department of Statistics, The University of British Columbia, Vancouver, BC, Canada, 1995, in: Ahmed, S.E. Reid, N. (Eds.), Empirical Bayes and Likelihood Inference, Springer, New York, 2001, p. 211). Our results complement those of Hu (Can. J. Stat. 25 (1997) 45). In particular, we invoke a di>erent asymptotic paradigm than that in Hu (Can. J. Stat. 25 (1997) 45). Moreover, our adaptive weights are allowed to depend on the data.