General formalism of vibronic Hamiltonians for tetrahedral and octahedral systems: problems that involve T, E states and t, e vibrations

dc.contributor.authorZeng, Tao
dc.contributor.authorHickman, Riley J.
dc.contributor.authorKadri, Aya
dc.contributor.authorSeidu, Issaka
dc.date.accessioned2020-04-03T15:37:25Z
dc.date.available2020-04-03T15:37:25Z
dc.date.issued2017
dc.description.abstractWe derive expansion formulas up to arbitrary order in vibrational coordinates for the tetrahedral and octahedral vibronic Hamiltonians that involve T and E states, and t and e vibrations. These states feature both Jahn–Teller (JT) and pseudo-Jahn–Teller (pJT) effects, and the vibrations are the most JT and pJT active. We first derive the formulas for 92 problems of T and Td symmetries involving up to two vibrational modes. The formulas can be easily generalized to problems of Th, O, and Oh symmetries, as well as problems involving more than two vibrational modes. They can also be adapted to describe spin–orbit vibronic Hamiltonians of tetrahedral p-type problems. Overall, this work makes crucial preparations for future studies on vibronic coupling problems of tetrahedral and octahedral systems. Most importantly, a new, simple, modularized approach to construct vibronic Hamiltonians for a set of related problems, instead of particular problems one by one, is presented.en_US
dc.identifier.citationT. Zeng, R. J. Hickman, A. Kadri, I. Seidu. “General formalism of vibronic Hamiltonians for tetrahedral and octahedral systems: problems that involve T, E states and t, e vibrations.” Journal of Chemical Theory and Computation 2017, 13, 5004-5018.en_US
dc.identifier.urihttps://doi.org/10.1021/acs.jctc.7b00787en_US
dc.identifier.urihttps://hdl.handle.net/10315/37164
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.rights.articlehttps://pubs.acs.org/doi/abs/10.1021/acs.jctc.7b00787en_US
dc.titleGeneral formalism of vibronic Hamiltonians for tetrahedral and octahedral systems: problems that involve T, E states and t, e vibrationsen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
paper.pdf
Size:
854.07 KB
Format:
Adobe Portable Document Format
Description:
Main text
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.83 KB
Format:
Item-specific license agreed upon to submission
Description: