Probing Charge Generation in 3D Photonic Poly(3-hexylthiophene)/Titanium Dioxide Nanocomposites for Bulk Heterojunction Solar Cells

Date

2016-09-20

Authors

Tulsiram, Nicholas

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Organic photovoltaics (OPVs) are attractive for their inexpensiveness, large-scale fabrication methods, flexibility and semi-transparency. OPVs have lower efficiencies than conventional inorganic semiconductor-based solar cells, and hence methods to enhance light-harvesting properties are sought-after. Photonic crystals are unique nanomaterials that present the ability to enhance light-harvesting properties through electromagnetic field localization and slow photon effect. In this work, three-dimensional photonic crystals were successfully integrated into the active layers of bulk-heterojunction solar cells by fabricating a series of titanium dioxide inverse opals coated with poly(3-hexylthiophene). The optical, morphological, and charge generation properties of the nanocomposites were investigated. Transient photoinduced absorption spectroscopy showed enhanced charge generation due to a potential photonic enhancement and the increased interfacial area of the porous structure. This research serves as a proof of concept, where the photonic properties of inverse opals and their high surface area may be exploited with different materials in other solar cell systems.

Description

Keywords

Chemistry

Citation

Collections